2、金屬3D打印技術
金屬零件3D打印技術作為整個3D打印體系中最為前沿和最有潛力的技術,是先進制造技術的重要發展方向。隨著科技發展及推廣應用的需求,利用快速成型直接制造金屬功能零件成為了快速成型主要的發展方向。目前可用于直接制造金屬功能零件的快速成型方法主要有:選區激光熔化(Selective Laser Melting,SLM)、電子束選區熔化(Electron Beam Selective Melting,EBSM)、激光近凈成形(Laser Engineered Net Shaping,LENS)等。

激光工程化凈成形技術( LENS)
LENS是一種新的快速成形技術,它由美國Sandia國家實驗室首先提出。其特點是: 直接制造形狀結構復雜的金屬功能零件或模具; 可加工的金屬或合金材料范圍廣泛并能實現異質材料零件的制造; 可方便加工熔點高、難加工的材料。

LENS是在激光熔覆技術的基礎上發展起來的一種金屬零件3D打印技術。采用中、大功率激光熔化同步供給的金屬粉末,按照預設軌跡逐層沉積在基板上,最終形成金屬零件。1999年,LENS工藝獲得了美國工業界中“最富創造力的25項技術”之一的稱號。國外研究人員研究了LENS工藝制備奧氏體不銹鋼試件的硬度分布,結果表明隨著加工層數的增加,試件的維氏硬度降低。
國外研究人員應用LENS工藝制備了載重植入體的多孔和功能梯度結構,采用的材料為Ni、Ti等與人體具有良好相容性的合金,制備的植入體的孔隙率最高能達到70%,使用壽命達到7-12年。 Krishna等人采用Ti-6Al-4V和Co-Cr-Mo合金制備了多孔生物植入體,并研究了植入體的力學性能,發現孔隙率為10%時,楊氏模量達到90 GPa,當孔隙率為70%時,楊氏模量急劇降到2 GPa,這樣就可以通過改變孔隙率,使植入體的力學性能與生物體適配。 Zhang等制備了網狀的 Fe 基(Fe-B-Cr-C-Mn-Mo-W-Zr)金屬玻璃(MG)組件,研究發現MG的顯微硬度達到9.52 GPa。Li通過LENS工藝修復定向凝固高溫合金GTD-111。國內的薛春芳等采用LENS工藝,獲得微觀組織、顯微硬度和機械性能良好的網狀的Co基高溫合金薄壁零件。費群星等采用LENS工藝成型了無變形的Ni-Cu-Sn合金樣品。無人機

在LENS系統中,同軸送粉器包括送粉 器、送粉頭和保護氣路3部分。送粉器包括粉末料箱和粉末定量送給機構,粉末的流量由步進電機的轉速決定。為使金屬粉末在自重作用下增加流動性,將送粉器架設在2. 5 m的高度上。從送粉器流出的金屬粉末經粉末分割器平均分成4份并通過軟管流入粉頭,金屬粉末從粉頭的噴嘴噴射到激光焦點的位置完成熔化堆積過程。全部粉末路徑由保護氣體推動,保護氣體將金屬粉末與空氣隔離,從而避免金屬粉末氧化。LENS 系統同 軸送粉器結構示意圖見圖1。 目前,快速原型技術已經逐步趨于成熟,發達國家也將激光工程化凈成形技術作為研究的重點,并取得了一些實質性成果。在實際應用中,可以利用該技術制作出功能復 合型材料,可以修復高附加值的鈦合金葉片,也可以運用到直升機、客機、導彈的制作中。另外,還能將該技術運用于生物植入領域,采用與人體具有相容性的Ni、Ti材質制備植入體,有效提升了空隙率,延長了植入體的使用時長。
